Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448797

RESUMO

In the present work, we study the genetic control of reproductive traits under different heat stress conditions in two populations of inbred lines derived from crosses between two S. pimpinellifolium accessions and two tomato cultivars (E9×L5 and E6203×LA1589). The temperature increase affected the reproductive traits, especially at extremely high temperatures, where only a few lines were able to set fruits. Even though a relative modest number of QTLs was identified, two clusters of QTLs involved in the responses of reproductive traits to heat stress were detected in both populations on chromosomes 1 and 2. Interestingly, several epistatic interactions were detected in the E9×L5 population, which were classified into three classes based on the allelic interaction: dominant (one locus suppressed the allelic effects of a second locus), co-adaptive (the double-homozygous alleles from the same parent alleles showed a higher phenotypic value than the combination of homozygous alleles from alternative parents) and transgressive (the combination of double-homozygous alleles from different parents showed better performance than double-homozygous alleles from the same parents). These results reinforce the important role of non-additive genetic variance in the response to heat stress and the potential of the new allelic combinations that arise after wide crosses.

2.
Plant Physiol Biochem ; 168: 282-293, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34673319

RESUMO

We analyzed the physiological impact of function loss on cheesmaniae alleles at the HKT1;1 and HKT1;2 loci in the roots and aerial parts of tomato plants in order to determine the relative contributions of each locus in the different tissues to plant Na+/K+ homeostasis and subsequently to tomato salt tolerance. We generated different reciprocal rootstock/scion combinations with non-silenced, single RNAi-silenced lines for ScHKT1;1 and ScHKT1;2, as well as a silenced line at both loci from a near isogenic line (NIL14), homozygous for the Solanum cheesmaniae haplotype containing both HKT1 loci and subjected to salinity under natural greenhouse conditions. Our results show that salt treatment reduced vegetative growth and altered the Na+/K+ ratio in leaves and flowers; negatively affecting fruit production, particularly in graft combinations containing single silenced ScHKT1;2- and double silenced ScHKT1;1/ScHKT1;2 lines when used as scion. We concluded that the removal of Na+ from the xylem by ScHKT1;2 in the aerial part of the plant can have an even greater impact than that on Na+ homeostasis at the root level under saline conditions. Also, ScHKT1;1 function loss in rootstock greatly reduced the Na+/K+ ratio in leaf and flower tissues, minimized yield loss under salinity. Our results suggest that, in addition to xylem Na+ unloading, ScHKT1;2 could also be involved in Na+ uploading into the phloem, thus promoting Na+ recirculation from aerial parts to the roots. This recirculation of Na+ to the roots through the phloem could be further favoured by ScHKT1;1 silencing at these roots.


Assuntos
Solanum lycopersicum , Alelos , Flores , Solanum lycopersicum/genética , Folhas de Planta , Raízes de Plantas/genética , Potássio , Tolerância ao Sal/genética
3.
Plant Physiol Biochem ; 154: 341-352, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32604062

RESUMO

Genes encoding HKT1-like Na+ transporters play a key role in the salinity tolerance mechanism in Arabidopsis and other plant species by retrieving Na+ from the xylem of different organs and tissues. In this study, we investigated the role of two HKT1;2 allelic variants in tomato salt tolerance in relation to vegetative growth and fruit yield in plants subjected to salt treatment in a commercial greenhouse under real production conditions. We used two near-isogenic lines (NILs), homozygous for either the Solanum lycopersicum (NIL17) or S. cheesmaniae (NIL14) allele, at HKT1;2 loci and their respective RNAi-Sl/ScHKT1;2 lines. The results obtained show that both ScHKT1;2- and SlHKT1;2-silenced lines display hypersensitivity to salinity associated with an altered leaf Na+/K+ ratio, thus confirming that HKT1;2 plays an important role in Na+ homeostasis and salinity tolerance in tomato. Both silenced lines also showed Na+ over-accumulation and a slight, but significant, reduction in K+ content in the flower tissues of salt-treated plants and consequently a higher Na+/K+ ratio as compared to the respective unsilenced lines. This altered Na+/K+ ratio in flower tissues is associated with a sharp reduction in fruit yield, measured as total fresh weight and number of fruits, in both silenced lines under salinity conditions. Our findings demonstrate that Na+ transporter HKT1;2 protects the flower against Na+ toxicity and mitigates the reduction in tomato fruit yield under salinity conditions.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Proteínas de Plantas/fisiologia , Estresse Salino , Solanum lycopersicum/fisiologia , Flores/química , Frutas/crescimento & desenvolvimento , Potássio/metabolismo , Sódio/química
4.
Plant Cell Environ ; 40(5): 658-671, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27987209

RESUMO

Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+ /K+ homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+ /K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.


Assuntos
Proteínas de Transporte de Cátions/genética , Homeostase , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Simportadores/genética , Alelos , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Loci Gênicos , Homeostase/efeitos dos fármacos , Homeostase/genética , Endogamia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Análise de Componente Principal , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Simportadores/metabolismo
5.
Front Plant Sci ; 7: 1782, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965690

RESUMO

Selection and breeding of rootstocks that can tolerate low K supply may increase crop productivity in low fertility soils and reduce fertilizer application. However, the underlying physiological traits are still largely unknown. In this study, 16 contrasting recombinant inbred lines (RILs) derived from a cross between domestic and wild tomato species (Solanum lycopersicum × Solanum pimpinellifolium) have been used to analyse traits related to the rootstock-mediated induction of low (L, low shoot fresh weight) or high (H, high shoot fresh weight) vigor to a commercial F1 hybrid grown under control (6 mM, c) and low-K (1 mM, k). Based on hormonal and ionomic composition in the root xylem sap and the leaf nutritional status after long-term (7 weeks) exposure low-K supply, a model can be proposed to explain the rootstocks effects on shoot performance with the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC) playing a pivotal negative role. The concentration of this hormone was higher in the low-vigor Lc and Lk rootstocks under both conditions, increased in the sensitive HcLk plants under low-K while it was reduced in the high-vigor Hk ones. Low ACC levels would promote the transport of K vs. Na in the vigorous Hk grafted plants. Along with K, Ca, and S, micronutrient uptake and transport were also activated in the tolerant Hk combinations under low-K. Additionally, an interconversion of trans-zeatin into trans-zeatin riboside would contribute to decrease ACC in the tolerant LcHk plants. The high vigor induced by the Hk plants can also be explained by an interaction of ACC with other hormones (cytokinins and salicylic, abscisic and jasmonic acids). Therefore, Hk rootstocks convert an elite tomato F1 cultivar into a (micro) nutrient-efficient phenotype, improving growth under reduced K fertilization.

6.
J Agric Food Chem ; 62(46): 11312-22, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25335473

RESUMO

Volatile compounds released from the fruit of two hybrid Citrus genotypes (FxCh90 and FxCh77) were compared to those from their parental varieties, Fortune mandarin and Chandler pummelo. A series of 113 compounds were identified, including 31 esters, 23 aldehydes, 20 alcohols, 17 monoterpenoids, and other compounds. The differences in the volatile profile among these four genotypes were essentially quantitative. The most striking result was that the volatile profile of the hybrids was not intermediate between their parents and completely differed from that of Chandler, but came closer to Fortune. This was because 56 of the 113 volatile compounds in the hybrids showed significantly higher or lower levels than in any of the parents. Such transgressive behavior in these hybrids was not observed for other fruit quality traits, such as acidity or soluble solid content. The combination of volatile profiling and chemometrics can be used to select new Citrus genotypes with a distinct volatile profile.


Assuntos
Citrus/química , Frutas/química , Extratos Vegetais/química , Compostos Orgânicos Voláteis/química , Citrus/genética , Frutas/genética , Genótipo , Hibridização Genética
7.
Plant Cell Environ ; 36(6): 1171-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23216099

RESUMO

The location of major quantitative trait loci (QTL) contributing to stem and leaf [Na(+) ] and [K(+) ] was previously reported in chromosome 7 using two connected populations of recombinant inbred lines (RILs) of tomato. HKT1;1 and HKT1;2, two tomato Na(+) -selective class I-HKT transporters, were found to be closely linked, where the maximum logarithm of odds (LOD) score for these QTLs located. When a chromosome 7 linkage map based on 278 single-nucleotide polymorphisms (SNPs) was used, the maximum LOD score position was only 35 kb from HKT1;1 and HKT1;2. Their expression patterns and phenotypic effects were further investigated in two near-isogenic lines (NILs): 157-14 (double homozygote for the cheesmaniae alleles) and 157-17 (double homozygote for the lycopersicum alleles). The expression pattern for the HKT1;1 and HKT1;2 alleles was complex, possibly because of differences in their promoter sequences. High salinity had very little effect on root dry and fresh weight and consequently on the plant dry weight of NIL 157-14 in comparison with 157-17. A significant difference between NILs was also found for [K(+) ] and the [Na(+) ]/[K(+) ] ratio in leaf and stem but not for [Na(+) ] arising a disagreement with the corresponding RIL population. Their association with leaf [Na(+) ] and salt tolerance in tomato is also discussed.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Potássio/fisiologia , Locos de Características Quantitativas , Sódio/fisiologia , Solanum lycopersicum/genética , Simportadores/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/metabolismo , Cromossomos de Plantas , Teste de Complementação Genética , Homeostase/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...